波蘭哥白尼學院院長暨秘書長與教科部國際司司長 來訪臺大
SS-MRAM核心記憶元超晶格MTJ之示意圖。圖中superlattice-barrier部分為超晶格勢壘層(PBL) ,由非磁性金屬(N)與非晶絕緣材料(I)構成。左右黃色部分為固定層及自由層,皆為鐵磁性金屬。
薛文証教授(前排右一)研究團隊合照。
本校工程科學及海洋工程學系薛文証教授主持之電子與光電實驗室,開發出一種新型MRAM記憶體SS-MRAM (或稱SL-STT-MRAM),最近分別獲得MRAM專業網站MRAM-Info,以及Nanowerk News報導。MRAM (magnetic random access memory)為非揮發性記憶體(non-volatile memory),其讀寫是以自旋電子(spintronics)進行操作,與傳統記憶體比較,MRAM具有耗電較少、待機零耗電、非揮發、高耐用性和高密度等優勢。未來有可能發展成通用型記憶體(universal memory),取代SRAM、 DRAM及Flash記憶體。在各類型MRAM中,目前以STT-MRAM (spin transfer torque MRAM)最受矚目。因此國內外半導體大廠也都積極投入STT-MRAM的研發與製造。
MTJ (magnetic tunnel junctions)為MRAM的單位記憶元,也是整個元件最核心的部分。MTJ構造為三明治結構,包含兩層鐵磁性金屬與中間極薄的勢壘層(potential barrier layer, PBL),PBL為絕緣材料,MTJ之最主要性能為磁阻率(magnetoresistance ratio, MR ratio)。2001年Butler及Mathon首度預測,若PBL採用單晶(single crystalline)MgO(001),MTJ之磁阻率理論上可達1000%。實驗已證實採用MgO(001)之MTJ,其磁阻率室溫下可達400-600%。至今MgO(001)仍為MTJ之PBL首選材料,也普遍應用於MRAM。雖然採用MgO(001),能夠符合MRAM的基本需求。但是實際應用在STT-MRAM仍有若干問題,包含寫入模式之耗電偏高,而且單晶MgO比較不穩定,設計與製造都較複雜,另外,長期使用下,單晶MgO材料,容易逐漸劣化,使得性能降低。如何突破這些瓶頸,是目前MRAM研究的重要課題。
為了解決這些問題,電子與光子學實驗室研究團隊,開發一種新型MRAM,將傳統STT-MRAM之單晶MgO(001),以超晶格(superlattice,或稱超材料)取代,稱為SS-MRAM (superlattice based STT-MRAM或SL-STT-MRAM),其中超晶格是以非晶(amorphous)絕緣體與金屬組成的6層結構,如圖1所示。與傳統使用具單晶MgO之STT-MRAM比較,SS-MRAM具有以下優點:
- 降低寫入模式之耗電。SS-MRAM可大幅降低RA值,並提高電子自旋極化效率,可以減少90%以上的寫入耗電,解決目前MRAM寫入模式耗電偏高之問題。
- 提高讀取模式之性能。SS-MRAM之磁阻率可大幅提高10倍以上,因此可大幅提高讀取模式之性能,也可以減少90%以上的讀取耗電。
- 製造較簡單容易。SS-MRAM之絕緣體為非晶,不需製成單晶,而且新製程與傳統製程完全相容,製造較簡單。
- 元件長期使用不會劣化。因為非晶材料性質穩定,因此SS-MRAM不容易劣化。耐久性將大幅提升,達到SRAM或DRAM水準。
與傳統的STT-MRAM相比,SS-MRAM可將MRAM性能大幅提升,且具有低耗電,高性能,製造容易,又有超高的可靠性。可以同時解決目前傳統STT-MRAM所面臨的一些重要問題。此研究將有助於推展MRAM成為次世代通用型記憶體,以取代傳統SRAM、 DRAM及Flash記憶體。
已發表期刊及國際會議論文:
- C. H. Chen and W. J. Hsueh*, 2014, “Enhancement of tunnel magnetoresistance in magnetic tunnel junction by a superlattice barrier,” Appl. Phys. Lett., Vol. 104, pp. 042405. Read More
- C. H. Chen, C. H. Chang, Y. H. Cheng, and W. J. Hsueh*, 2015, “Ultrahigh tunnel magnetoresistance using an artificial superlattice barrier with copper and aluminum oxide,” Europhys. Lett. Vol. 111, pp. 47005. Read More
- C. H. Chen, P. Tseng, C. W. Ko, and W. J. Hsueh*, 2017, “Huge spin transfer torque in a magnetic tunnel junction by a superlattice barrier,” Phys. Lett. A, Vol. 381, pp. 3124-3128. Read More
- P. Tseng and W. J. Hsueh*, 2018, “Enhancement of spin-transfer torque in superlattice-barrier magnetic tunnel junctions,” Global Conference on Magnetic and Magnetism Materials (GMMM 2018), July, 23-24, Osaka, Japan. Read More
- P. Tseng and W. J. Hsueh, 2019, “Ultra-giant magnetoresistance in graphene-based spin valves with gate-controlled potential barriers,” New J. Phys., Vol. 21, No. 113035. Read More
當期焦點